Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 22(3): 633-644, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016519

RESUMO

BACKGROUND: Laboratory resurrection of ancient coagulation factor (F) IX variants generated through ancestral sequence reconstruction led to the discovery of a FIX variant, designated An96, which possesses enhanced specific activity independent of and additive to that provided by human p.Arg384Lys, referred to as FIX-Padua. OBJECTIVES: The goal of the current study was to identify the amino acid substitution(s) responsible for the enhanced activity of An96 and create a humanized An96 FIX transgene for gene therapy application. METHODS: Reductionist screening approaches, including domain swapping and scanning residue substitution, were used and guided by one-stage FIX activity assays. In vitro characterization of top candidates included recombinant high-purity preparation, specific activity determination, and enzyme kinetic analysis. Final candidates were packaged into adeno-associated viral (AAV) vectors and delivered to hemophilia B mice. RESULTS: Five of 42 total amino acid substitutions in An96 appear sufficient to retain the enhanced activity of An96 in an otherwise human FIX variant. Additional substitution of the Padua variant further increased the specific activity 5-fold. This candidate, designated ET9, demonstrated 51-fold greater specific activity than hFIX. AAV2/8-ET9 treated hemophilia B mice produced plasma FIX activities equivalent to those observed previously for AAV2/8-An96-Padua, which were 10-fold higher than AAV2/8-hFIX-Padua. CONCLUSION: Starting from computationally inferred ancient FIX sequences, novel amino acid substitutions conferring activity enhancement were identified and translated into an AAV-FIX gene therapy cassette demonstrating high potency. This ancestral sequence reconstruction discovery and sequence mapping refinement approach represents a promising platform for broader protein drug and gene therapy candidate optimization.


Assuntos
Fator IX , Hemofilia B , Humanos , Camundongos , Animais , Fator IX/metabolismo , Hemofilia B/terapia , Hemofilia B/tratamento farmacológico , Cinética , Terapia Genética , Substituição de Aminoácidos , Vetores Genéticos , Dependovirus/genética , Dependovirus/metabolismo
2.
Blood ; 142(2): 197-201, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192299

RESUMO

The development of pathogenic antibody inhibitors against coagulation factor VIII (FVIII) occurs in ∼30% of patients with congenital hemophilia A receiving FVIII replacement therapy, as well as in all cases of acquired hemophilia A. KM33 is an anti-C1 domain antibody inhibitor previously isolated from a patient with severe hemophilia A. In addition to potently blocking FVIII binding to von Willebrand factor and phospholipid surfaces, KM33 disrupts FVIII binding to lipoprotein receptor-related protein 1 (LRP1), which drives FVIII hepatic clearance and antigen presentation in dendritic cells. Here, we report on the structure of FVIII bound to NB33, a recombinant derivative of KM33, via single-particle cryo-electron microscopy. Structural analysis revealed that the NB33 epitope localizes to the FVIII residues R2090-S2094 and I2158-R2159, which constitute membrane-binding loops in the C1 domain. Further analysis revealed that multiple FVIII lysine and arginine residues, previously shown to mediate binding to LRP1, dock onto an acidic cleft at the NB33 variable domain interface, thus blocking a putative LRP1 binding site. Together, these results demonstrate a novel mechanism of FVIII inhibition by a patient-derived antibody inhibitor and provide structural evidence for engineering FVIII with reduced LRP1-mediated clearance.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Fator VIII/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos , Fator de von Willebrand/metabolismo
3.
Front Mol Biosci ; 9: 1040106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387287

RESUMO

At sites of vascular damage, factor VIII (fVIII) is proteolytically activated by thrombin and binds to activated platelet surfaces with activated factor IX (fIXa) to form the intrinsic "tenase" complex. Previous structural and mutational studies of fVIII have identified the C1 and C2 domains in binding to negatively charged membrane surfaces through ß-hairpin loops with solvent-exposed hydrophobic residues and a ring of positively charged basic residues. Several hemophilia A-associated mutations within the C domains are suggested to disrupt lipid binding, preventing formation of the intrinsic tenase complex. In this study, we devised a novel platform for generating recombinant C1, C2, and C1C2 domain constructs and performed mutagenesis of several charged residues proximal to the putative membrane binding region of each C domain. Binding measurements between phosphatidylserine (PS)-containing lipid membrane surfaces and fVIII C domains demonstrated an ionic strength dependence on membrane binding affinity. Mutations to basic residues adjacent to the surface-exposed hydrophobic regions of C1 and C2 differentially disrupted membrane binding, with abrogation of binding occurring for mutations to conserved arginine residues in the C1 (R2163) and C2 (R2320) domains. Lastly, we determined the X-ray crystal structure of the porcine fVIII C2 domain bound to o-phospho-L-serine, the polar headgroup of PS, which binds to a basic cleft and makes charge-charge contact with R2320. We conclude that basic clefts in the fVIII C domains bind to PS-containing membranes through conserved arginine residues via a C domain modularity, where each C domain possesses modest electrostatic-dependent affinity and tandem C domains are required for high affinity binding.

4.
J Thromb Haemost ; 20(9): 1957-1970, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722946

RESUMO

Advances in structural studies of blood coagulation factor VIII (FVIII) have provided unique insight into FVIII biochemistry. Atomic detail models of the B domain-deleted FVIII structure alone and in complex with its circulatory partner, von Willebrand factor (VWF), provide a structure-based rationale for hemophilia A-associated mutations which impair FVIII stability and increase FVIII clearance rates. In this review, we discuss the findings from these studies and their implications toward the design of a recombinant FVIII with improved circulatory half-life. Additionally, we highlight recent structural studies of FVIII bound to inhibitory antibodies that have refined our understanding of FVIII binding to activated platelet membranes and formation of the intrinsic tenase complex. The combination of bioengineering and structural efforts to understand FVIII biochemistry will improve therapeutics for treating hemophilia A, either through FVIII replacement therapeutics, immune tolerance induction, or gene therapy approaches.


Assuntos
Fator VIII , Hemofilia A , Anticorpos , Plaquetas/metabolismo , Fator VIII/metabolismo , Humanos , Fator de von Willebrand/metabolismo
5.
Blood Adv ; 6(11): 3240-3254, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35255502

RESUMO

The intrinsic tenase (Xase) complex, formed by factors (f) VIIIa and fIXa, forms on activated platelet surfaces and catalyzes the activation of factor X to Xa, stimulating thrombin production in the blood coagulation cascade. The structural organization of the membrane-bound Xase complex remains largely unknown, hindering our understanding of the structural underpinnings that guide Xase complex assembly. Here, we aimed to characterize the Xase complex bound to a lipid nanodisc with biolayer interferometry (BLI), Michaelis-Menten kinetics, and small-angle X-ray scattering (SAXS). Using immobilized lipid nanodiscs, we measured binding rates and nanomolar affinities for fVIIIa, fIXa, and the Xase complex. Enzyme kinetic measurements demonstrated the assembly of an active enzyme complex in the presence of lipid nanodiscs. An ab initio molecular envelope of the nanodisc-bound Xase complex allowed us to computationally model fVIIIa and fIXa docked onto a flexible lipid membrane and identify protein-protein interactions. Our results highlight multiple points of contact between fVIIIa and fIXa, including a novel interaction with fIXa at the fVIIIa A1-A3 domain interface. Lastly, we identified hemophilia A/B-related mutations with varying severities at the fVIIIa/fIXa interface that may regulate Xase complex assembly. Together, our results support the use of SAXS as an emergent tool to investigate the membrane-bound Xase complex and illustrate how mutations at the fVIIIa/fIXa dimer interface may disrupt or stabilize the activated enzyme complex.


Assuntos
Fator IXa , Fator VIIIa/metabolismo , Lipídeos , Cisteína Endopeptidases , Fator IXa/química , Fator IXa/genética , Fator IXa/metabolismo , Proteínas de Neoplasias , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Front Immunol ; 12: 697602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177966

RESUMO

Factor VIII (fVIII) is a procoagulant protein that binds to activated factor IX (fIXa) on platelet surfaces to form the intrinsic tenase complex. Due to the high immunogenicity of fVIII, generation of antibody inhibitors is a common occurrence in patients during hemophilia A treatment and spontaneously occurs in acquired hemophilia A patients. Non-classical antibody inhibitors, which block fVIII activation by thrombin and formation of the tenase complex, are the most common anti-C2 domain pathogenic inhibitors in hemophilia A murine models and have been identified in patient plasmas. In this study, we report on the X-ray crystal structure of a B domain-deleted bioengineered fVIII bound to the non-classical antibody inhibitor, G99. While binding to G99 does not disrupt the overall domain architecture of fVIII, the C2 domain undergoes an ~8 Å translocation that is concomitant with breaking multiple domain-domain interactions. Analysis of normalized B-factor values revealed several solvent-exposed loops in the C1 and C2 domains which experience a decrease in thermal motion in the presence of inhibitory antibodies. These results enhance our understanding on the structural nature of binding non-classical inhibitors and provide a structural dynamics-based rationale for cooperativity between anti-C1 and anti-C2 domain inhibitors.


Assuntos
Anticorpos Monoclonais Murinos/química , Fator VIII/antagonistas & inibidores , Fator VIII/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Cristalografia por Raios X , Fator VIII/imunologia , Hemofilia A/sangue , Hemofilia A/imunologia , Humanos , Camundongos , Simulação de Dinâmica Molecular , Conformação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Suínos
7.
Blood ; 137(21): 2981-2986, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33529335

RESUMO

Antibody inhibitor development in hemophilia A represents the most significant complication resulting from factor VIII (fVIII) replacement therapy. Recent studies have demonstrated that epitopes present in the C1 domain contribute to a pathogenic inhibitor response. In this study, we report the structure of a group A anti-C1 domain inhibitor, termed 2A9, in complex with a B domain-deleted, bioengineered fVIII construct (ET3i). The 2A9 epitope forms direct contacts to the C1 domain at 3 different surface loops consisting of Lys2065-Trp2070, Arg2150-Tyr2156, and Lys2110-Trp2112. Additional contacts are observed between 2A9 and the A3 domain, including the Phe1743-Tyr1748 loop and the N-linked glycosylation at Asn1810. Most of the C1 domain loops in the 2A9 epitope also represent a putative interface between fVIII and von Willebrand factor. Lastly, the C2 domain in the ET3i:2A9 complex adopts a large, novel conformational change, translocating outward from the structure of fVIII by 20 Å. This study reports the first structure of an anti-C1 domain antibody inhibitor and the first fVIII:inhibitor complex with a therapeutically active fVIII construct. Further structural understanding of fVIII immunogenicity may result in the development of more effective and safe fVIII replacement therapies.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Fator VIII/química , Proteínas Recombinantes de Fusão/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Fator VIII/genética , Fator VIII/imunologia , Fator VIII/metabolismo , Hemofilia A/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Suínos
8.
J Biol Chem ; 294(48): 18451-18464, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31645439

RESUMO

Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) and a central component of the NO-cGMP pathway, critical to cardiovascular function. NO binding to the N-terminal sensor domain in sGC enhances the cyclase activity of the C-terminal catalytic domain. Our understanding of the structural elements regulating this signaling cascade is limited, hindering structure-based drug design efforts that target sGC to improve the management of cardiovascular diseases. Conformational changes are thought to propagate the NO-binding signal throughout the entire sGC heterodimer, via its coiled-coil domain, to reorient the catalytic domain into an active conformation. To identify the structural elements involved in this signal transduction cascade, here we optimized a cGMP-based luciferase assay that reports on heterologous sGC activity in Escherichia coli and identified several mutations that activate sGC. These mutations resided in the dorsal flaps, dimer interface, and GTP-binding regions of the catalytic domain. Combinations of mutations from these different elements synergized, resulting in even greater activity and indicating a complex cross-talk among these regions. Molecular dynamics simulations further revealed conformational changes underlying the functional impact of these mutations. We propose that the interfacial residues play a central role in the sGC activation mechanism by coupling the coiled-coil domain to the active site via a series of hot spots. Our results provide new mechanistic insights not only into the molecular pathway for sGC activation but also for other members of the larger nucleotidyl cyclase family.


Assuntos
GMP Cíclico/metabolismo , Simulação de Dinâmica Molecular , Mutação , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/genética , Sequência de Aminoácidos , Animais , Domínio Catalítico , GMP Cíclico/química , Ativação Enzimática/genética , Humanos , Cinética , Óxido Nítrico/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/metabolismo
9.
Nitric Oxide ; 77: 53-64, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29702251

RESUMO

Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5'-triphosphate (GTP) into cyclic guanosine 3',5'-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.


Assuntos
Domínio Catalítico , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/metabolismo , Animais , Biocatálise , Humanos , Óxido Nítrico/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...